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ABSTRACT 

The flow field between the shock wave and the 
contact surface in a circular shock tube has been 
solved in the steady-state case, that is, one in which 
the contact surface moves at the same speed as the 
shock wave. Axial and radial variations in the veloc­
ity and thermodynamic properties due to the presence 
of a laminar boundary layer have been considered. 
The momentum and energy equations are solved si­
multaneously subject to the requirement that the mass 
flux across  a given cross  section of the tube equals 
the mass flux across  the shock wave. Flow in the in-
viscid region is assumed to be an isentropic com­
pression of rea l  air. 

The computed solutions were compared with 
measurements reported in the literature for shock 
Mach numbers from 4.51 to 9.50. The theoretical 
results a r e  in good agreement with the measurements 
of the test time, the velocity profile, and the axial 
distribution of density. 

Furthermore, the solution technique has been 
used to solve for the test time assuming that the bound­
ary layer is wholly turbulent. The results indicate that 
boundary layer turbulence significantly reduces the test 
time. 
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ANALYSIS OF TEST TIMES AND BOUNDARY LAYER INDUCED 

PROPERTY VARIATIONS IN A CIRCULAR SHOCK TUBE 

By John J. Bertin 
Manned Spacecraft Center 

SUMMARY 

The flow field between the shock wave and the contact surface in a circular shock 
tube has been solved in the steady-state case, that is, one in which the contact surface 
moves at the same speed as the shock wave. Axial and radial variations in the velocity 
and thermodynamic properties due to the presence of a laminar boundary layer have 
been considered. The momentum and energy equations are solved simultaneously sub­
ject to the requirement that the mass f lux across a given cross  section of the tube 
equals the mass flux across the shock wave. Flow in the inviscid region is assumed to 
be an isentropic compression of real air. 

The computed solutions were  compared with measurements reported in the liter­
ature for shock Mach numbers from 4 . 5 1  to 9.50. The theoretical results are in good 
agreement with the measurements of the test time, the velocity profile, and the axial 
distribution of density. 

Furthermore, the solution technique has been used to solve for the test time as­
suming that the boundary layer is wholly turbulent. The results indicate that boundary 
layer turbulence significantly reduces the test time. 

INTRODUCTION 

In an ideal shock tube, that is, one in which boundary layer and diaphragm effects 
are neglected, the shock wave moves at a constant velocity, and the contact surface 
moves at a constant, but slower velocity. Thus, for given flow conditions, the time 
between the passage of the shock wave and the contact surface, that is, the test time, 
increases linearly with the distance from the diaphragm location. Due in part  to bound­
ary layer induced acceleration of the contact surface, the experimentally observed 
test times are significantly shorter than the theoretical values (ref. 1). Measurements 
made in a low-pressure shock tube indicated the test time is independent of tube length 
over a tenfold range of length for all but the shortest length (ref. 2). 

Early solutions for the shock-tube boundary layer wer'e for a thin, laminar bound­
ary layer in a perfect gas (ref. 3). The solutions were extended to include turbulent 
boundary layers (ref. 4), and later to incorporate real gas effects (ref. 5). A recent 



study (ref. 6) considers the mutual interaction between the boundary layer and the free-
stream flow. The free-stream nonuniformities and the boundary layer growth are ap­
proximated by series expansions. The inviscid region is assumed to behave as a 
perfect gas. 

In the present investigation the momentum and energy equations for a laminar 
boundary layer a r e  solved simultaneously subject to the requirement that mass  flux 
across  a given cross  section of the tube equals the mass flux across  the shock wave. 
Flow in the inviscid region is assumed to be an isentropic compression of real air. 
Axial and radial distribution of the velocity and thermodynamic properties are computed 
without a priori assumptions regarding property distributions in the shocked gas. The 
present paper includes shock Mach numbers from 4 . 5  to 9 . 5  and discusses the influ­
ence of turbulent boundary layers. 

The analysis and computations presented in this paper are part  of a doctoral dis­
sertation submitted to Rice University. 

The author wishes to express his appreciation to those who contributed of their 
time and knowledge to this investigation: J. Kenneth Oney of Lockheed Electronics 
Corp. for invaluable programing assistance and advice, and Dr. F. A. Wierum of 
Rice University and K. C. Weston of MSC for enlightening discussions. 
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SYMBOLS 

speed of sound, ft/sec 

Chapman-Rubesin factor, 	A 
pwpw 

specific heat, Btu/slug-"R 

reduced stream function, equation (6) 

reduced enthalpy function, H/Hse 

total enthalpy in shock-fixed coordinate system, h -+ 1u2, ft2/sec 2 
2 

static enthalpy, f t2/sec 


mechanical equivalent of heat, 778 ft-lbf/Btu 


thermal conductivity, Btu/ft-sec-"R 


shock Mach number, U p ,  


Prandtl number, Pr = pcp/k 



P 

r 

ReL 

m 

St 

S 


T 


U 

U 

V 

X 

X m 

� 

I-1 

static pressure, Ibf/ft2 

2heat transfer rate, Btuht -sec 

radius of shock tube, f t  


radial distance from axis of shock tube, f t  


Reynolds number used in heat transfer correlation, defined by equation (22) 


Reynolds number used in boundary layer transition criteria, defined by 
equation (18) 

Stanton number, defined by equation (21) 

transformed x-coordinate, defined by equation (2) 

static temperature, "R 

component of velocity in  x-direction, laboratory fixed coordinates, ft/sec 

component of velocity in x-direction, shock-wave fixed coordinates, ft/sec 

component of velocity in y-direction, shock-wave fixed coordinates, ft/sec 

axial distance in shock-wave fixed coordinates, measured from shock wave, ft 

equivalent length, f t  

axial distance from shock wave to contact surface from viscous solution, ft 

coordinate normal to wall, f t  


dimensionless test parameter defined by equation (17) 


boundary layer thickness defined by y-coordinate where U = 0. 99Ue, ft 


density ratio, p2/p1 

transformed y-coordinate, defined by equation (3) 

dimensionless density, 
P W  

dynamic viscosity, lbf-secl 2f t  
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U kinematic viscosity, f t y s e c  

P density, slugs/k3 

p’ density, averaged over cross  section of tube, slugsht3 


7 test time, sec 


# stream function, defined by equation (6) 


Subscripts: 


aw adiabatic wall 


e conditions evaluated at edge of boundary layer 

eo conditions evaluated in inviscid region just downstream of shock wave 

S conditions for shock wave 

se stagnation conditions in inviscid portion of flow 

W conditions evaluated at wall 

wo conditions evaluated at wall just downstream of shock wave 

1 conditions evaluated upstream of shock wave 

ANALYSIS 

It has been observed that the test time in a shock tube reaches a limiting value 
due to the growth of a boundary layer. In this limiting case, Duff (ref. 2) concluded 
that the contact surface moves at the same speed as the shock wave. The test gas 
passing through the shock wave is removed through the boundary layer at the contact 
surface. In a shock-wave fixed coordinate system, the problem is a steady-state one, 
as shown in figure 1. 

t Y  

X 
Shock 

Uw=Us wave Xrn 

(Contact surface) 

Figure 1.- Test gas flow f i e l d  i n  shock-wave f ixed  coordinate system. 
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For a laminar boundary layer, assumed to be in thermodynamic equilibrium with 
a Lewis number of 1, the equations of motion are 

Making the standard boundary layer  assumption that 

and the pressure gradient, from the inviscid momentum equation, is 

then the momentum equation becomes 

au au 


Ordinarily in the case of two-dimensional flow, the equations of motion, which 
are nonlinear partial differential equations, are reduced to a pair of ordinary, non­
linear differential equations by means of a coordinate transform which automatically 
satisfies the continuity equation. A commonly used transform is that of Levy (ref. 7) 
as modified by Lees (ref. 8). This "Levy-Lees" transformation makes use of the ve­
locity, density, and viscosity evaiuated at the edge of the boundary layer. Since the 
inviscid velocity, which is a function of x, goes to zero at the contact surface of the 
shock-wave fixed coordinate system, this transformation was considered unsatisfactory 
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for the present problem. The following modified form of the Levy-Lees transformation 
was used: 

s f X P w  Pw uw dx 

Thus, the differential operators become 

A stream function J/ is defined such that the continuity equation is satisfied automat­
ically 

Solving for the stream function 

J/ = (2s)’/Y$ dq = ( 2 ~ ) ~ ’ ~f(q) 
W 

Thus, 

v=r$)sU 


W 
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Substituting equations (2) to (7) into the momentum.and energy equations yields 

2 ds  

and 

= 2s [g)s(%)y- (%),(E)yl (9) 

where 

Hg = -
Hse 

Assuming local similarity holds for the velocity and the enthalpy profiles (ref. 9), the 
terms on the right-hand side of equations (8) and (9) may be neglected. Thus, the fol­
lowing forms for the equations for conservation of momentum and energy a r e  obtained 

-­f f"  + (Cf") + 2s 
~ 

PeUe 
2 

due - 0ds  
pW uw 

2 

fg' + (+g.) 
' 

+ 
u5(l-&) (Cftf',)' = 0 

r se r 
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In equations (10) and (ll),the prime denotes differentiation with respect to 17, and 

Furthermore, the Prandtl number has been assumed to be constant. 

The boundary conditions for the momentum and energy equations a t  the wall a r e  

and at the edge of the boundary layer are 

U
f '  (03)= -e = function(s) 

U
W 

Implicit in the boundary conditions is the assumption that the wall temperature is con­
stant (and equal to the static temperature ahead of the shock). Measurements made by 
Martin (ref. 10) support the assumption of constant wall  temperature. 

In addition to the momentum and the energy equation, flow in the shock tube must 
satisfy the overall continuity equation 

Peo Ueo n R = p U  nR +iR(2 e e  pu - pe ue)2nr dr 
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Transforming the preceding equation into the current notation so that the variables are 
the same as those used in the momentum and the energy equations, the continuity equa­
tion becomes 

To facilitate numerical solution of equations (10) to (13), the dimensionless parameters 
8 and C must be expressed as a function of f and g. The thermodynamic charts of 
reference 11are used to calculate the density ratio and the temperature ratio for a 
given wall temperature over a range of pressure. The viscosity is calculated using 
Sutherland's relation for air 

-7 T3/2 
= 2.28 X 10 -____T + 199 

modified a t  high temperatures by the factors of reference 12. The results a r e  virtually 
independent of pressure for the range of pressures considered in this report. 

The equations of Mirels (ref. 5) provide a satisfactory correlation of the calcula­
tions. The expression used for Chapman-Rubesin factor C is 

The values computed using equation (14) are within 3 percent of the values calculated 
using the thermodynamic charts together with Sutherland' s viscosity. Similarly, e 
can be approximated by the relation 

h0.02586 j-i- + 0.94828 

e =  W 

0.02586 
hW 

Although equation (15) is correct to within a few percent for the majority of the pres­
sure  and enthalpy range of interest, the values obtained using equation (15) differ by as 
much as 22 percent from the calculations based on the thermodynamic charts at the 
highest enthalpies and the lowest pressures  considered in this report. 
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In equations (14) and (15) 

U 

g - a T s  (f')2 

h s e-­
hW hW 

Thus, equations (lo), ( l l ) ,  and (13) constitute the system of equations governing 
test gas flow in a shock tube. When supplemented by the assumption that flow in the 
inviscid portion of the shock tube is isentropic and by an equation of state, the equa­
tions may be solved to give the flow field of the shocked gas subject to the boundary 
conditions outlined in equation (12). 

DISCUSSION 

Laminar Flow 

The flow field of shock-compressed gas in a circular shock tube has been solved 
for the steady-state case, for which the test time has reached its maximum value. 
Consideration has been given to variations in the inviscid properties due to the pres­
ence of a laminar boundary layer. The momentum and energy equations a r e  solved 
simultaneously subject to the requirement that, in the steady-state problem, the mass 
flux of shocked gas across  any cross  section is equal to the mass flux across the shock 
wave. The solution of the equations is repeated at locations further downstream of the 
shock until all the mass flux is contained in the boundary layer, that is, the edge ve­
locity in shock-wave fixed coordinates goes to zero. This model is consistent with ex­
perimental observations, in which the contact surface and the shock wave move with 
the same speed. 

Test times were computed by direct solutions of equations (lo), (ll), and (13) 
accounting for the velocity gradient term. The test times were also computed neglect­
ing the velocity gradient. A compilation of the computed test times is presented in 
table I. Solutions neglecting the velocity gradient gave test times virtually identical to 
those computed accounting for the velocity gradient. The effect of the radius on the 
theoretical test time was  checked. For Ms = 7. 59 and p1 = 2.78 psf, flow-field solu­
tions neglecting the velocity gradient were obtained for three different shock-tube di­
ameters. The test time is proportional to the square of the radius. 
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TABLE I. - TEST TIMES COMPUTED FOR SHOCK WAVE 

MOVING AT HYPERSONIC SPEED 

-_. .-- i -~ 

7, VelocityP1' R, P psec 
X 

f t  
m' 

gradientMS lbf/ft2 f t  
-

9. 50 0.556 0.08333 1.141 20.81 0.2208 zero 
9.50 .556 .08333 1. 141 20.81 .2208 nonzero 
7.62 .556 .08333 1.251 28.36 .2417 zero 
7.59 .278 .04688 1.244 4.336 .0375 zero 
7. 59 .278 .08333 1.254 13.49 .1167 zero 
7. 59 .278 .12083 1.248 28.64 .2477 zero 
7. 59 .278 . 12083 I. 248 28.64 .2477 nonzero 
6. 67 2.78 .08333 1.328 172.1 1.2833 zero 
6. 28 .806 . 12083 I. 395 109.6 .7710 zero 
5.905 2.78 .08333 1.396 207.0 1.3667 zero 
5.90 1.751 . 12083 I. 368 262.7 1.8125 zero 
5.00 .556 .07375 1.430 38.09 .2131 zero 
5.00 .556 .07375 I. 425 38.60 .2158 nonzero 
5.00 2.78 .07375 1.464 221.6 1.2390 zero 
5.00 13.90 .87375 I. 468 1134.6 6.3425 zero 
5.00~___-~ . 23 ,90 - .07375 1.464 1134.6 6.3425 nonzero 

The computed test times a r e  presented in figure 2 in terms of the dimensionless 
test  parameter /3 as a function of the shock Mach number. The parameter P is given 
by the relation 

' 1.6 

I
I I greater than 5, /3 was  virtually unaffected 

by the velocity gradient. At a given shock 
Mach number, variations in the diameter 

1 . 4  

1 8  I l l  For hypersonic shock waves, that is, Ms 

or in the static pressure upstream of the 
B shock wave resulted in only slight varia­

1 .2 I tions in P. Included for comparison isI
/ I  I I  the relation found by Mirels (ref. 13) as-

~ 

-1.0 
L l l C  pi C D C l l L  3 U I U L I U l l  PIU V I U C ' D  V Q l U G 3  UI pt which a r e  5 to 18 percent less than the1 1 1 1 1 1 1 1 1 1 // 1 1 I I \ ~ #values of Mirels. 

2 4 6 8 10 12 
MS 

2.- Values of B as a function 
of Ms. 
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The computed test  times a r e  compared with the experimental values of Roshko 
(ref. 14), Bray (ref. 15), and Sandborn (ref. 16) in table II. No distinction is made be­
tween the flow-field solutions accounting for the velocity gradient and those neglecting 
it, since the test time was virtually independent of the velocity gradient term at these 
conditions. The theoretical test time exceeds the measurements by more than 10 per­
cent in half of the cases investigated. The discrepancy is attributed to turbulent mixing 
across  the contact surface and to turbulence in the boundary layer. A Reynoldsnumber, 
similar to that used in reference 17 to correlate experimental data, was defined as 

Rex = Peo U m eo 

TABLE II. - COMPARISON OF MEASURED AND THEORETICAL 

TEST TIMES 


P1’ 7 
(computed), 

7 
(measured), Source x 

MS 1bfht2 psec p e c  m 

9. 50 0. 556 20.81 18.8 Roshko 0. 67 
7. 62 ,556 28.36 36 Roshko . 4 1  
7.59 .278 28.64 20 to 35 Sandborn .20  
6.67 .278 172. 1 131. 5 Roshko 7. 15 
6.28 .806 109.6 80 to 100 Sandborn 1. 05 
5.905 2.78 207.0 109 Roshko 5.71 
5.90 1.751 262.7 170: 30 Sandborn 5.24 
5.00 .556 38.09 38 Bray .20  
5.00 2.78 221.6 89 Bray 3.88 
5.00 13. 90 1134. 6 144 Bray 9.35 

In each case where the computed test time significantly exceeds the measured 

value, the Reynolds number is greater  than3.5 X 105. The Reynolds number is reason­
ably close to the transition criteria indicated by the data of reference 17, which was a 
transition Reynolds number of 5.0 X 105. Thus, turbulence in the boundary layer is as­
sumed to be a major source of the discrepancy between measurements and theory. 

For a shock wave moving a t  hypersonic speed, the computed test time is a func­
tion of the static pressure upstream of the shock, the radius of the shock tube, and the 
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i I I  

10-1 

Figure 3 . - Corre la t ion  of t h e  co,mputed 
t e s t  t imes.  

'i I ! :  

10.' 10-3 10-1 

Figure 4.- Comparison of measured 
and t h e o r e t i c a l  t e s t  t imes,  laminar 
f low.  

shock Mach number. As indicated in fig­
ure  3, the computed test times are closely 
approximated by the equation 

PlR2 
The use of __ as a correlating param-

MS 
eter has been suggested by Roshko. 

The experimentally-determined test 
times a r e  presented in figure 4 as discrete 
values o r  as a range of values, depending 
on the data reported. The measurements 
a r e  in good agreement with equation (19) 

PlR2 
for a value of ___ less  than 0.002 pound. 

MS 
At higher values of the correlating param­
eter, the experimental test times a r e  sig­
nificantly less than the computed values. 
As  discussed previously, boundary layer 
turbulence is considered to be a prime 
contributor to this discrepancy. 

The change in the density, averaged 
over the cross  section, is presented in 
figure 5 as a function of the square root 
of the distance from the shock wave. The 
density distribution is from the flow-field 
solution for Ms= 7.59 and p1 = 0.278 psf. 

The solution includes the effect of the velocity gradient term. As was observed experi­
mentally by Duff (ref. 2), the fractional change in the density is a linear function of the 
square root of the fractional distance from the shock to the contact surface. 

In the steady-state problem, the shock wave and the contact surface move at the 
same speed. Since the contact surface is assumed to be impermeable in the inviscid 
region, the inviscid velocity in shock-fixed coordinates is zero at the contact surface. 
Thus, the inviscid velocity varies along the axis of the shock tube, decreasing from the 
value immediately downstream of the shock wave to zero at the contact surface. The 
variation exists because the fraction of the mass flux across  a cross  section of the 
shock tube which is transported by the boundary layer increases as the boundary layer 
grows. The local inviscid velocity relative to the velocity immediately behind the 
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shock is presented in figure 6 as a function of the fraction of the distance from the 
shock wave to the contact surface. The velocity distributions were obtained from the 
flow-field solutions accounting for the velocity gradient. The axial velocity distribu­
tion is seen to be independent of the flow conditions over the range of hypersonic Mach 
numbers investigated. 

Figure 5.- Variation in average density as 
a function of the position in the shock 
tube. Ms = 7.59. 

Once the variation of the velocity is 
obtained, the associated change in the 
thermodynamic properties can be com­
puted if the process by which the gas is 
decelerated is defined. In the present so­
lution the thermodynamic properties were 
computed assuming an isentropic com­
pression of the inviscid flow in accord­
ance with the velocity function described 
in figure 6. The axial distribution of 
pressure and enthalpy, thus computed, 
a r e  presented in figures 7(a) and 7(b), 
respectively. Although the velocity is a 
function of axial position only, the pres­
sure  and the enthalpy depend upon the 
flow conditions as well as the location. 
At a given location, the fractional in­
crease in the pressure, or enthalpy, is 
inversely proportional to the shock Mach 
number. Most of the incremental change 
in the thermodynamic property is accom­
plished in the first half of the test length. 
Over the last half of the test length, the 

1.0 


.8 


.6 


Ue-
eo 

.4 

.2 

0 
0 .2  .4 .6 .8 1.0 

X-
Xm 

Figure 6.- Computed axial distribution of 

the inviscid velocity. 


0 .2 .4 .b 1.0 

-
Xm 

(a) Pressure 

Figure 7.-Axial distribution of 


thermodynamic properties. 
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property varies relatively little, asymp­
totically approaching the value at the con­
tact surface. 

In addition to the computed test 
times and the axial distributions of the 
flow parameters, which have been dis­
cussed, the solution of equations (10) to 
(13) yields radial distributions. From 
the solution for Ms = 7.59 and 
p1 = 0.278 psf, the boundary layer pro­
files at a cross  section approximately 
one-fourth of the distance from the shock 
wave to the contact surface a r e  presented 
in figures 8(a), 8(b), and 8(c). The bound­
ary layer parameters a r e  presented as a 
function of Q, the transformed 
y-coordinate. For figure 8 the "edge" 
of the boundary layer is defined as the 
value of Q for which lfl'l = 0.0005. 
This definition was employed in the com­
puter program instead of the more con­
ventional definition that U U = 0. 99 atl e  
the edge. 

The transformed s t ream function 
and its first  and second derivatives with 
respect to r )  a re  presented in figure 8(a). 
The velocity function f '  = u p W  varies 

4 

3 

I 

t 2  


1 


~ 

/ 
0 \ 

- .4  -.2 .2 .8 1.0 
9, g' 

Enthalpy function and 

derivatives. 


Figure 8.-Continued. 


1 

1 

h, 

he0 

I 

P .2 .4 .6 .8 1.0 
X 

~ 

Xm 

(b) Enthalpy 

Figure 7.- Concluded. 


0 .2 .4 .6 .8 1 .o 

f .  f'. f'l 

(a) Velocity function and its derivatives. 
Figure 8.-Boundary layer profiles,
M~ = 7.59, p1 = 0.278 psf, x/mx = 

0.2683. 

n 


0 .2  .4 .b  .8 1.0 

c, e 
(e) Density and Chapman-Rubesin factor 

Figure 8.-Concluded. 
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from 1 at the wall to u 
e/ 

uw = 0.0608 at the boundary layer edge. In laboratory-fixed 

coordinates the velocity profile is given by 

u 1 - f '  
'e 1 - f', 

The shear function, which is a maximum a short  distance from the wall, asymptotically 
approaches zero as q--. 

The dimensionless enthalpy function and i ts  f irst  derivative with respect to q 
a r e  presented in figure 8(b). In the boundary layer the total enthalpy varies from 
0. 87Hse to 1.OHse. The enthalpy gradient is negative a t  the wall, goes positive, and 

finally approaches zero asymptotically as q-m. 

PThe density function 6' = - and the Chapman-Rubesin factor a r e  presented inP 
W 

figure 8(c). Near the wall both parameters decrease rapidly as q increases. fir­
thermore, they approximate their edge values at q = 1 . 2  and vary little for q > 1.2. 

6Values of f"(0) and g'(0) and -R a r e  presented in table 111as a function of 

the inviscid flow parameters relative to their wall values and of a dimensionless axial 
coordinate. The computed values reflect the influence of the velocity gradient on the 
flow-field solution. By using these values for the shear function and the enthalpy gradi­
ent, the heat-transfer ra te  was computed. Substitution of the coordinate transforma­
tion, equation (4), and the definitions of f and g into the heat-transfer equation 

yields 
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TABLE III. - SHEAR FUNCTION, ENTHALPY GRADIENT, AND BOUNDARY LAYER 

THICKNESS FROM SOLUTIONS OF FLOW FIELD FOR HYPERSONIC SHOCK WAVE 

]Flow conditions I 1 
6 

'e 'e f "(0) R 

0.0755 18.862 0.07397 0.3591 0.07625 -0.4584 -0.2017 0.0340 
.8305 18.958 .00968 .3584 .07596 -.4755 -.2135 .1339 

7.59 0.278 0.0244 12.360 0.10389 0.4202 0.1028 -0.4741 -0;1997 0.0236 
.2683 12.443 .Of3080 ,4194 .lo23 -.4894 -.2088 .0781 
.5122 12.471 .03686 .4190 .lo21 -.4972 -.2137 .llll 
.7561 12.483 .01732 .4189 .lo20 -.5020 -.2173 ,1348

I I 

5.00 0.566 0.0173 5.894 0.13600 0.5571 0.1876 -0.5056 .1903 5.945 .09007 .5552 .1862 -.5246 
.3633 5.964 .06512 .5545 .1857 -.5349 .5363 5.977 .04509 .5541 .1854 -.5417 
.7618 5.983 .02301 ,5538 .1852 -.5475 

~ 

The computed heating rates  presented in terms of the Stanton number a r e  presented in 
table N as a function of the Reynolds number ReL. The Stanton number is given by 

the relation 

St = Q 
'e?, - Ue)(haw - 'w) 

and the Reynolds number by 

Over the range of flow conditions considered, the product S t K  is essentially con­

stant. The measurements reported in reference 18 also indicate that .this parameter is 
essentially constant over the shock Mach number range (1 < Ms < 101 and is indepen­
dent of pressure. However, the experimental values of S t m ,  which were evaluated 
neglecting axial variations in the inviscid properties, are between 0.6 and 0.85. To 

17 




assess  the influence of the velocity gradient term on the computed value of S t d T ,  

a flow-field solution was  obtained neglecting the velocity gradient term but accounting 
for changes in the inviscid flow. The value of S t i q ,  thus computed for Ms = 7.59 

/ 
and p1 = 0.278 psf, was 1. 130, which is essentially the same as the values of 

table IV. Since the experimental values a r e  from the literature, it is difficult to define 
possible sources of e r ro r  and hence to assess discrepancies between the heat transfer 
measurements and the present theory. 

TABLE IV.- COMPUTED HEAT TRANSFER CORRELATIONS 

Flow conditions I 
X 

X 
St ReL s t p q  

MS. 

9. 50 0. 566 0.0755 0.0474 593 1.157 
.8305 .01504 64 50 1.206 

7. 59 0.278 0.0244 0.1315 73 1.126 
.2683 .0386 871 1.140 
.5122 .0283 1672 1.158 
.7651 .0228 2530 1.146 

5.00 0.556 0.0173 0.1352 64 1.080 
.1903 .0397 770 1.103 
.3633 .0283 1515 1.100 .5363 .0232 2300 1.113 

.~ 

Turbulent Flow 

The discrepancies between the experimentally observed test times and the theo­
retical values shown in figure 4 and table II were attributed to turbulence in the bound­
ary layer. The conclusion was based on the Reynolds number. To further support the 
assumption, the test times were computed accounting, in an approximate manner, for 
a fully developed turbulent boundary layer originating at  the shock wave. 

Since, for turbulent flow, the compressible boundary layer is not much thicker 
than the incompressible boundary layer (ref. 18), the relations for two-dimensional, 
incompressible flow over a flat plate a r e  used to describe the velocity profile and the 
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boundary layer growth. The velocity in laboratory-fixed coordinates is assumed to 

obey the -1 th-power law, that is,7 

1/7 uW - U  

u - uw e 

Solving for the velocity in the shock-wave fixed coordinate system yields 

U
W W 

Correspondingly, the boundary layer thickness is assumed to obey the relation for  a 
flat plate (ref. 18). 

6 = 0.37 (xeq)O* (Ar'
ue 'e 

Since the properties vary in the axial direction, the equivalent length x is used in 
eq

equation (24) instead of the physical distance from the shock wave. The equivalent 
length is defined as that length which, i f  the properties are assumed constant and equal 
to the values a t  the cross  section of interest, yields a boundary layer thickness equal 
to the thickness calculated accounting �or the property variation. 

Although the velocity profiles and the boundary layer thickness are given by in­
compressible flow relations, solutions were obtained treating the density both (1) as 
a variable across  the boundary layer and (2) as a constant, equal to the wall density. 
The expression for the variable density is 

0.02586 r_-
h + 0.94828 

11
We =  

0.02586 
hW 
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where 

2 

1--
U

W 

h 2Hse-
hW hW 

Hse 

Equation (26) incorporates the assumption that the total enthalpy is invariant across the 
boundary layer. 

In addition to satisfying the above equations, flow in the shock tube must satisfy 
the overall continuity relation 

’eo Ueo = p ue + 2pw uw /6 (f’8 - f ’  e e  )(R - y) dy8e 
R2 0 

Thus, equations (23)through (27) constitute a system of equations approximati‘ng 
the gas flow in a shock tube in the presence of a turbulent boundary layer. The equa­
tions are supplemented by the assumption that flow in the inviscid portion of the shock 
tube is isentropic and by an equation of state. 

(1 I I I ’  

Figure 9.- Test times fo r  a turbulent 
boundary layer. 

The test time computations a re  sum­
marized in figure 9 and in table V. As 
mentioned, solutions were obtained both 
for 8 = 1 and for 8 = 8(q) .  The test times 
computed assuming the density to be con­
stant a r e  almost an order of magnitude 
shorter than the values computed using 
equation (25) to define the density profile. 
It is believed that the present approach 
may be used as a framework for a more 
rigorous analysis of the turbulent bound­
ary layer to provide improved flow-field 
solutions. Experimental measurements 
of the steady-state time where the bound­
ary layer is known to be turbulent a r e  not 
available for comparison with the com­
puted times. 
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TABLE V. - COMPUTED TEST TIMES IN THE PRESENCE OF A TURBULENT 

BOUNDARYLAYER 

e = i  I e = I
IP1' R, I '  

MS PSf f t  P psec 
I 

5.00 13.90 0.07375 6.790 52.77 2.566 369.4 
5.00 6.795 ,12083 6.090 86.46 2.381 562.0 
4.51 13.75 .12083 7.460 - 143.56I3.134-

CONCLUDING REMARKS 

The solution of the flow field between the shock wave and the contact surface in a 
circular shock tube has been obtained for the steady-state case, that is, one in which 
the shock wave and the contact surface move at  the same speed. The momentum and 
energy equations are solved simultaneously subject to the requirement that the mass 
flux across a given cross  section of the tube equals the mass flux across the shock 
wave. The boundary layer is assumed to be wholly laminar. Flow in the inviscid re­
gion is assumed to be an isentropic compression of rea l  air. 

The equations are transformed from the physical (x, y) coordinate system by 
means of a unique transformation which is a modification of the Levy-Lees transforma­
tion. An iterative process employing fourth order Runge-Kutta numerical integration 
formulas is used to solve the momentum and energy equations in the boundary layer. 
The boundary layer profiles and inviscid fluid properties a r e  adjusted until the require­
ment of conservation of mass  flux across  a shock-tube cross  section is satisfied. 

Axial and radial variations in the velocity and thermodynamic properties a r e  ac­
counted for in the solution. For shock Mach numbers greater than 5, the test times 
a r e  virtually independent of the velocity gradient. 

The computed solutions were compared with experimental data representing shock 
Mach numbers from 4.5 to 9.50. The comparisons indicate that the computed flow 
field is a valid representation of the actual situation. Specifically, the following con­
clusions wele reached 

(1) The change in the density, averaged over the cross  section, is a linear func­
tion of the square root of the distance from the shock wave. The linear relation was 
experimentally observed by Duff. 

(2) The flow-field solutions gave test times which are in good agreement with the 
experimental values, providing the measurements were made for a laminar boundary 
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layer. Furthermore, the test time was found to be a function of the static pressure 
upstream of the shock multiplied by the square of the Reynolds number and divided by 

the shock Mach number kc),as predicted by Roshko.-

(3) The computed solutions gave a constant value for a heat transfer correlation 
parameter S t p i .  Although the magnitude of this parameter measured by Hartunian 

was significantly different, the measurements indicate that the parameter was independ­
ent of the shock Mach number and static pressure upstream of the shock as was com­
puted theoretically. The agreement between the measurements and the computed 
solutions indicates the technique provides a valid description of the flow between the 
shock wave and the contact surface when the boundary layer is laminar. Thus, the test  
time and both radial and axial distributions of the velocity and thermodynamic proper­
ties can be computed without a priori  assumptions regarding the shocked gas. 

A major source of discrepancy between the measurements and theory is assumed 
to be boundary layer turbulence. Preliminary calculations indicate that the approach 
employed for a laminar boundary layer can be used i f  the proper relations governing 
turbulent boundary layers a r e  used. 

Manned Spacecraft Center 
National Aeronautics and Space Administration 

Houston, Texas, September 28, 1966 
030-0000-CR-72 
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